
1

Credit Assignment via Behavioral Timescale Synaptic Plasticity: Theoretical 1
Frameworks 2

Ian Cone1,2*, Claudia Clopath2#, Rui Ponte Costa1# 3

1 Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and 4
Genetics, University of Oxford, Oxford, United Kingdom 5

2 Department of Bioengineering, Imperial College London, London, United Kingdom 6

 7

*Email: ian(dot)cone(at)dpag(dot)ox(dot)ac(dot)uk 8

#co-senior 9

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

2

Abstract 10

Behavioral Timescale Synaptic Plasticity (BTSP) is a form of synaptic plasticity in which 11

dendritic Ca²⁺ plateau potentials in hippocampal pyramidal neurons drive rapid place field 12

formation. Unlike traditional learning rules, BTSP learns correlations on the timescales of 13

seconds and rapidly changes single-unit activity in only a few trials. To explore how BTSP-14

like learning can be integrated into network models, we propose a generalized BTSP rule 15

(gBTSP), which we apply to unsupervised and supervised learning tasks, in both feedforward 16

and recurrent networks. Unsupervised gBTSP mirrors classical frameworks of competitive 17

learning, learning place field maps (in the feed-forward case), and attractive memory 18

networks (in the recurrent case). For supervised learning, we show that plateau events can 19

reduce task error, enabling gBTSP to solve tasks such as trajectory matching and delayed 20

non-match-to-sample. However, we find that credit assignment via gBTSP becomes harder 21

to achieve with increased network depth or CA3-like recurrence. This suggests that additional 22

features may be needed to support BTSP-mediated few-shot learning of complex tasks in the 23

hippocampus. 24

 25

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

3

Introduction 26

Recent experimental observations have revealed the existence of a novel plasticity 27
phenomenon occurring in hippocampus, termed "Behavioral Timescale Synaptic Plasticity" 28
(BTSP). BTSP occurs in hippocampal pyramidal cells following strong, dendritic “plateau 29
potentials”, and has been observed to be a “primary” driver of field formation (such as place 30
fields) in both hippocampal areas CA11–3 and CA34. Unlike other established learning rules, 31

BTSP operates over a wide temporal range, potentiating and depressing inputs which were 32
active seconds before or after a postsynaptic “plateau” event. A similarly distinctive feature 33
of BTSP is its rapid learning speed - once triggered, it can form long-lasting hippocampal 34
fields in a one-shot or few-shot manner. 35

While the discovery of BTSP has advanced our understanding of single-cell learning in 36
hippocampus, we are still lacking a comprehensive theoretical framework to understand how 37
BTSP may contribute to network level plasticity. For example, experiments have shown that 38

inputs from entorhinal cortex layer 3 (EC3) are necessary to trigger plateau potentials in CA1, 39
and as such, have been hypothesized to act as a sort of “target signal”5 which guides plateau 40

generation. But what sort of “targets” should EC3 produce? That is, “when” and “where” 41
should BTSP-triggering plateau events occur for hippocampal learning to be successful? Or, 42
from a more general perspective, “when” and “where” should BTSP events occur to optimize 43
a network’s function? 44

Furthermore, how can we reconcile the hallmarks of BTSP (wide temporal kernel and few-45
shot learning) with traditional learning frameworks (particularly supervised ones)6–13, for 46

which small learning rates and temporally precise credit assignment are generally required 47
for convergence? Does the presence of BTSP put constraints on the possible tasks and the 48

neural architectures (i.e. circuit designs) which can learn them? 49

Previous theoretical work on BTSP has described in detail its single-cell properties1,2,14 and 50

consequences in memory networks4,15,16. However, such work has thus far have been forced 51

to assume specific, hand-tuned plateau induction protocols. In contrast, this work aims to 52
formulate BTSP in such a way that we can describe where and when post-synaptic plateaus 53
should occur such that the network learns a given unsupervised or supervised objective. 54

Towards this goal, we formulate a generalized BTSP rule which can a) match existing 55
experimental data, and b) give us analytical, differentiable expressions for how the learning 56

performance (i.e. the loss) depends plateau events. We take this rule and demonstrate its 57
ability to learn in both feed-forward and recurrent networks, on both supervised and 58

unsupervised tasks. Since we derive an analytical expression for plateau “function”, we can 59
predict the occurrence of plateau events, given that we know the weights, inputs and task. 60
Further, by applying constraints on our expression for plateau events, we can approximate 61

the sparse nature of these events in vivo. However, we show that the rapid, one-shot 62

formation of single fields associated with BTSP runs into critical stability issues when applied 63
in deep/recurrent networks, because of exploding and vanishing mathematical terms. We 64
finish by discussing how potential architectures and tasks may be able to avoid this issue, 65

and what the implications are for our understanding of hippocampal networks. 66

Altogether, this work provides a unified, analytical framework for understanding BTSP in 67
relation to network-level learning, establishing a theoretical foundation through which we can 68
explore how this unique form of plasticity can be integrated into hippocampus-mediated 69
learning processes. 70

Results 71

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

4

Generalized BTSP Rule Recapitulates Experimentally Observed Plasticity Kernels 72

We begin by building a generalized learning rule, based on experimental observations of 73
BTSP. For clarity, we will hereafter refer to our rule as “gBTSP” (generalized BTSP, Figure 74
1a-c) and refer to the experimental phenomena as simply “BTSP”. To start, consider the 75
simple case of a single postsynaptic neuron which triggers an instantaneous plateau event, 76

and a single presynaptic neuron which fires a spike (Figure 1a). We assume the postsynaptic 77

plateau updates weight 𝑊 via some function, 𝑊𝑘𝑒𝑟𝑛𝑒𝑙, which depends on the timing of the 78

presynaptic spike relative to the plateau, i.e. Δ𝑊 ∝ 𝑊𝑘𝑒𝑟𝑛𝑒𝑙(𝑡𝑝𝑟𝑒 − 𝑡𝑝𝑙𝑎𝑡𝑒𝑎𝑢). 79

Owing to the wide temporal window in which plateau potentials have been observed to 80

potentiate and depress inputs1–3, we assume that 𝑊𝑘𝑒𝑟𝑛𝑒𝑙 operates on a timescale much 81

larger than that of mere pre-post activity correlations. Specifically, we choose a 𝑊𝑘𝑒𝑟𝑛𝑒𝑙 such 82

that the application of our learning rule matches observed plasticity following application of a 83
single plateau and bursting inputs in vitro (Figure 1d)2. Next, we relax our previous 84

assumption that there is a single presynaptic neuron which fires a single spike, instead 85

considering continuous presynaptic activity (of each unit 𝑗), 𝑥𝑗(𝑡) (Figure 1b). Now, the 86

change in weights following a single plateau is a function of both the weight kernel and the 87

presynaptic activity, i.e. Δ𝑊𝑗 ∝ 𝑓(𝑊𝑘𝑒𝑟𝑛𝑒𝑙(𝑡 − 𝑡𝑝𝑙𝑎𝑡𝑒𝑎𝑢), 𝑥𝑗(𝑡)). See Methods for full derivation 88

and expression. 89

To match experimental data showing that the amplitude of the formed field depends on the 90
initial membrane voltage of the postsynaptic cell1, we also add in a dependence on the 91
synaptic strength prior to the plateau event (see Methods). Following these additions to our 92

rule, we can now use the same 𝑊𝑘𝑒𝑟𝑛𝑒𝑙 from Figure 1d and show that for place field-like 93

inputs 𝑥𝑗(𝑡) , our rule recapitulates the observed plasticity kernels measure from single 94

plateaus in vivo (Figure 1e)1. With this framework, the previously observed asymmetric offset 95

of observed plasticity (Figure 1e)1 is a direct consequence of the shape of 𝑊𝑘𝑒𝑟𝑛𝑒𝑙 Figure 1d 96

(see Methods). 97

Finally, we want to consider the case for which there are multiple postsynaptic neurons, each 98

of which may have a plateau (or potentially multiple). So, we introduce 𝑃𝑖(𝑡), a function 99

representing the post-synaptic plateau potential at time 𝑡 for neuron 𝑖. Critically, this post-100

synaptic plateau 𝑃𝑖(𝑡) is used only for learning and is distinct from the post-synaptic network 101

activity, 𝑦𝑖(𝑡) . Now, the change in the weights will depend on the weight kernel, the 102

presynaptic activity, synaptic strength, and post-synaptic plateaus, i.e. Δ𝑊𝑖𝑗 ∝ 𝑓(𝑊𝑘𝑒𝑟𝑛𝑒𝑙(𝑡 −103

𝑡𝑝𝑙𝑎𝑡𝑒𝑎𝑢), 𝑥𝑗(𝑡), 𝑊𝑖𝑗, 𝑃𝑖(𝑡)) (Figure 1c). 104

The full form of this dependence is given by the following equation, which we will hereafter 105

refer to as “generalized” BTSP, since it is derived from various steps of generalization from 106

our initial fundamental assumption (Δ𝑊 ∝ 𝑊𝑘𝑒𝑟𝑛𝑒𝑙(𝑡𝑝𝑟𝑒 − 𝑡𝑝𝑙𝑎𝑡𝑒𝑎𝑢)): 107

Δ𝑊𝑖𝑗 = ∫ 𝑃𝑖(𝑡) [∫ 𝑊𝑘𝑒𝑟𝑛𝑒𝑙(𝑡′ − 𝑡)𝑥𝑗(𝑡′)𝑑𝑡′ − 𝜆𝑊𝑖𝑗
𝑡+∆𝑡

𝑡−∆𝑡

] 𝑑𝑡
𝑇

0

(1) 108

See Methods for full details and derivation. From this gBTSP equation, we can now take any 109

set of inputs, choose any kernel, apply any arbitrary distribution of plateaus, and obtain a 110
resulting change in the network’s synaptic weights. Note that gBTSP (as with BTSP) does 111
not depend on postsynaptic activity directly, distinguishing it from standard Hebbian and 112
Hebbian-like (e.g. STDP) learning rules. 113

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

5

Figure 1 – Generalized BTSP recovers experimentally observed plasticity kernels

(a-c) Schematics of different BTSP induction setups. a) A single plateau occurs in a postsynaptic

neuron, and a single spike occurs in presynaptic neuron. Weight changes ∆𝑊 depend on some

function of the relative time between the plateau and the presynaptic spike. b) A single plateau

occurs in a postsynaptic neuron at 𝑡𝑝𝑙𝑎𝑡𝑒𝑎𝑢, but now presynaptic neurons have some activity 𝑥𝑗(𝑡).

Weight changes ∆𝑊 can be described as some function of the weight kernel and presynaptic

activity. c) Potentially continuous plateau activity 𝑃𝑖(𝑡) occurs in the postsynaptic population. The
resulting plasticity (“generalized BTSP” or “gBTSP”) depends on the weight kernel, presynaptic
activity, and the postsynaptic plateau activity. d) Left, the kernel in our model uses two decaying
exponentials, each with a different time constant. Right, the experimentally observed kernel,
reprinted with permission from Bittner et al. 20172; copyright AAAS. e) Left, the ∆𝑊 in our model
when using the weight kernel from panel d) and a set of place fields (putatively from CA3) as
presynaptic inputs. Right, observed ∆𝑊 in vivo, reprinted with permission from Milstein et al. 20211;
CC BY 4.0.

 114

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

6

Given this mathematical description of our learning rule, we now seek to gain a deeper 115
understanding of its function. How does it operate inside of a network? What types of learning 116

tasks is it well or poorly suited for? We will now investigate the properties of gBTSP in both 117

unsupervised and supervised contexts, for both feed-forward and recurrent networks. 118

Unsupervised gBTSP leads to competitive learning and one-shot field formation in 119

feed-forward networks 120

To understand how gBTSP operates in the simplest case, we first consider gBTSP as an 121

unsupervised rule. Returning to the simple case where we have a single plateau (and a short 122
temporal kernel), Equation 1 simplifies greatly (see Methods), giving us an expression for 123

plasticity of the form Δ𝑊𝑗 = 𝑥𝑗(𝑡𝑝𝑙𝑎𝑡𝑒𝑎𝑢) − 𝜆𝑊𝑗. So, in this approximation, upon each plateau 124

event, the weights would move towards a fixed point 𝑊𝑗 =
1

𝜆
𝑥𝑗(𝑡𝑝𝑙𝑎𝑡𝑒𝑎𝑢). Such a formulation 125

is reminiscent of classical conceptions of “competitive learning”17–20, whereby postsynaptic 126

neurons 𝑦𝑖 “compete” with each other to encode a pattern 𝑥𝑗
𝑝
 in its weights 𝑊𝑖𝑗 (where 𝑝 is 127

the index of a particular pattern, and 𝑗 indexes over the pattern’s components). The decay 128

term (− 𝜆𝑊𝑗) acts as heterosynaptic depression, promoting competition between units21. 129

Often, competitive learning is concerned with encoding multiple input patterns (or indeed, a 130

whole distribution of possible input patterns), using various forms of “competition” (via some 131
rule) to assign different postsynaptic neurons to represent distinct parts of the input space17–132
20. This algorithm has appealing aspects in the context of BTSP (and the hippocampus) – 133
when presented with an input distribution, competitive learning can quickly (few-shot for a 134

single unit) assign a unit to represent a part of that input space. Over the course of sampling 135
the input distribution, a3 population-level representation slowly emerges. We might consider 136
the hippocampus to be solving an analogous problem, e.g. forming a latent representation 137

which tiles a given input space, taking care to have both a) coverage over the whole space, 138

and b) well-separated or orthogonal latents which do not interfere with each other. 139

In order to adapt gBTSP for competitive learning, we must select a criterion for triggering 140

plasticity events. Commonly, competitive learning methods only apply the weight update to 141

the “best matching unit” (e.g. one which has a small Euclidean distance between 𝑥𝑗
𝑝
 and 142

𝑊𝑗)19,22. If we followed that logic, we would only trigger plateau events for these “best 143

matching units”. However, this does not easily map onto learning in continuous time, 144
particularly when we consider our temporally extended weight kernel. Instead, we choose an 145

even simpler criterion, whereby a plateau event occurs in random neuron if the sum of total 146

postsynaptic network activity ∑ 𝑦𝑖(𝑡)𝑖 falls below some threshold 𝜃 (see Methods). In other 147

words, if ∑ 𝑦𝑖(𝑡)𝑖 < 𝜃, we consider the currently arriving input 𝐱(𝐭) to be poorly represented 148

in the output layer 𝐲(𝐭). To amend this, the network fires a plateau, forming a new field (or 149

translocating an existing one) that is tuned to 𝐱(𝐭). To test this simple algorithm for plateau 150

assignment, we imagine a network of CA1 neurons to be receiving noisy but spatially tuned 151
input from CA3 neurons, as an agent traverses an environment (Figure 2a). We consider 152
both 1D (modelling an animal on a treadmill) and 2D (modelling an animal freely moving in a 153
box) environments. 154

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

7

Figure 2 – Competitive learning via gBTSP allows for one-shot formation of fields which tile
the input space

a) Modelled inputs from CA3 project to our model CA1 neurons through weights 𝑊𝑖𝑗. A plateau

fires at a random postsynaptic neuron when the sum of postsynaptic activity is below some

threshold 𝜃. b) For this task setup, inputs are drawn from a simulated agent running along a 1D

treadmill. c) The learned fields across the population uniformly tile the 1D space. d) Using this
plateau condition, single cells develop and translocate fields in a one-shot manner. For this
particular unit, two plateau events occurred during training. e) The probability of a plateau event
(blue line) peaks upon introduction to the novel environment, before decreasing to a baseline rate
once a sufficient map has been learned. This time course is inverse to the total network activity
(orange line). f) The baseline rate of plateau events (due to noise) causes representational drift.
Blue, cosine similarity between unsorted network activity at the current lap and unsorted network
activity at lap 10. Orange, cosine similarity between sorted network activity at the current lap and
sorted activity at lap 10. Both measures peak at lap 10 because the cosine similarity of the activity
at lap 10 with itself is 1. g) For this task setup, inputs are drawn from a simulated agent randomly
exploring a 2D box. h) In a 2D environment, single fields still develop and translocate rapidly. i)
Sum of neural activity for a trial where the agent explores the entire 2D environment. The learned
latent representation covers the extent of the box.

 155

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

8

For the case of a 1D environment, our agent moves along a treadmill at a uniform velocity 156
(Figure 2b), receiving spatially tuned inputs (see Methods), and applying a gBTSP plateau 157

every time the low activity condition (∑ 𝑦𝑖(𝑡)𝑖 < 𝜃) is met. After training, the population activity 158

has evolved to span the space of the inputs, forming place fields which tile the length of the 159
track (Figure 2c). Following the evolution of a single neuron in the network reveals that 160
plateaus can both form and translocate fields in a one-shot manner (Figure 2d). The full, 161
population level representation takes ~10 laps to mature, during which time there is a high 162
likelihood of plateau events (as the network fills in “blank” spaces in the representation). The 163

probability of plateau events scales inversely with the activity of the network, as we would 164
reasonably expect from our criterion for triggering plateaus (Figure 2e). For subsequent laps 165
after the network has evolved a mature representation (around lap 10), noise can still cause 166
our plateau condition to be triggered. This can cause the translocation of existing fields 167
(Figure 2d), also opening representational gaps that were previously filled. This effect leads 168

to representational drift in unsorted representations, whereby the cosine similarity between 169
the unsorted representation of the current lap and that of a reference lap (lap 10) increases 170

as a function of experience (Figure 2f, blue), as has been reported experimentally23,24 . 171
However, this does not mean the content of the representation is fading – if we instead 172
calculate the cosine similarity between sorted representation of the current lap and the sorted 173
representation of a reference lap (lap 10), this measure remains stable over experience 174
(Figure 2f, orange). This reveals that most of the representational drift occurring in the 175

network is index-related, i.e. neurons may shift their tuning (or “label”) and “shuffle” where 176

they occur in the sequence, but the internal, population-level sequential structure is 177
maintained (Figure 2c)25. 178

We can extend further to a 2D environment (Figure 2g), where an agent takes a random 179
walk inside a box, again receiving spatially tuned but noisy inputs (see Methods). Unlike the 180
case of the 1D treadmill, where each lap the animal encountered the exact same input, here, 181

the animal’s random walk means that it will experience a unique sequence of inputs each 182

trial. Over the course of training, individual cells develop characteristic 2D place fields which 183
evenly tile the space. Place field emergence in single-cells is still one- to few-shot, even in 184
the 2D case (Figure 2h). We make the agent traverse the entire environment after training 185

and find that the sum of network activity provides a map which covers the extent of the box 186
environment (Figure 2i). 187

In summary, we find that for unsupervised learning in feed-forward networks, our 188
mathematical formulation of BTSP can be mapped onto the classical framework of 189
competitive learning. By applying gBTSP in simulated environments, we find that our network 190

acts as we would expect from a competitive learner, taking a high-dimensional input space 191
and summarizing it with a discrete set of lower-dimensional latent states. If BTSP indeed 192
follows a simple threshold principle for competition, our model would predict that plateau 193
probability across a network should be inversely proportional to that network’s activity (Figure 194

2e). Further, our model predicts that representational drift for a given learned neural trajectory 195
is mostly a consequence of a “musical chairs-like” resorting, whereby transient and stochastic 196
dips in total network activity in one location are likely to trigger a translocating plateau event, 197

leading to a dip in network activity in the translocated field’s previous location (Figure 2d-f). 198

Unsupervised gBTSP can facilitate attractor learning in recurrent networks 199

Given that BTSP has been observed in CA3, driving plasticity in recurrent CA3→CA3 200
synapses4, we now consider how unsupervised gBTSP might be understood in the context 201

of a recurrent network. A common model of CA3 is that of an attractor network26–30, where 202
an “attractor” can be framed in the context of discrete memory states (e.g. a Hopfield 203
model)31,32, or a continuous manifold27,33–35. Experimental results have demonstrated CA3's 204

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

9

ability to both pattern complete and tune its activity via velocity-dependent inputs4,36,37, 205
hallmarks of a (recurrent) attractor network. As such, it is reasonable to suspect BTSP may 206

be involved with the formation or maintenance of these networks. Indeed, previous theoretical 207

work has shown that the BTSP rule’s characteristic kernel is well suited for optimal memory 208
storage in discrete memory networks4, but it remains unclear if/how an unsupervised form of 209
BTSP can give rise to attractors. 210

In order to simplify our problem, we will utilize a two-part architecture in our network, inspired 211
by similar parametrizations of recurrent nets designed to learn or sustain attractors38–41. In 212
short, we imagine there to be two distinct populations in CA3, with only one of the populations 213
eligible to receive plateaus via gBTSP. This assumption is based on experimental results 214

which have shown that the ability or propensity of pyramidal cells in CA3 to have complex 215
bursting events (i.e. a plateau) is variable from cell to cell, and may depend on features such 216
as topographic position and/or dendritic morphology42,43. Both of our populations (“visible” 217

neurons 𝑢𝑗(𝑡) and “seed” neurons 𝑠𝑖(𝑡)) connect recurrently to each other, via “encoding” 218

weights 𝐖𝐞 and “decoding” weights 𝐖𝐝 , with the visible neurons receiving external input 219

𝑜𝑘(𝑡), and only the seed neurons are eligible for plateaus (Figure 3a). The relative strength 220

of recurrent/external input onto the visible neurons is governed by a gating function which 221
depends on the norm of the external input (see Methods): when external input is high, 222

recurrent input is low, and vice versa. Owing to this gating, high external input effectively 223
turns the network into a feed-forward one, and when input is removed, the network restores 224
its recurrency. This dual nature of the network allows us to take advantage of recurrent 225

computation in the low-input phase, while making use of unsupervised, feed-forward gBTSP 226
in the high-input phase. For full details, see Methods. 227

Since our aim is to learn attractor states (i.e. 𝐮(𝐭) = 𝐮(𝐭 − 𝟏) for no input), we would like our 228

effective recurrence, 𝐖𝐫𝐞𝐜 = 𝐖𝐝𝐖𝐞 to be approximately to the identity matrix. To avoid trivial 229

solutions, we make two choices. First, we set the seed population to be smaller (in number) 230

than the visible population, forcing the network to compress and then decompress its 231

representations (this is equivalent to making 𝐖𝐫𝐞𝐜 low-rank). Second, we apply the same 232

competitive learning framework from the feed-forward case (∑ 𝑠𝑖(𝑡)𝑖 < 𝜃) to learn the 233

encoding weights, so that the seed neurons learn latent representations which tile the input 234
space. The decoder weights are set to be the transpose of the encoder weights, which is 235

sufficient since the learned encoding is well-separated (near orthogonal). Ideally, some 236
biophysically plausible learning rule can govern the evolution of these decoder weights44, but 237
for the purposes of this study, we use the transpose relationship as a simple approximation. 238

We simulate an agent running along a 1D treadmill, again receiving spatially selective inputs 239
which are processed by our model CA3 network (Figure 3a). The seed neurons are allowed 240
to plateau, doing so under the same low-activity criteria as in the feed-forward case. During 241

training, the agent runs along the track and external inputs are strong. Plateau events occur 242

in response, guiding the evolution of the encoding weights (and thereby the decoder weights). 243

Seed neurons form receptive fields to their visible neuron counterparts (Figure 3b), similar 244
to the formation of place receptive fields in the purely feedforward case (Figure 2c). After just 245
the first lap of training, the recurrent weights have formed a ring topology, with fixed point 246
nodes (memories) at locations dictated by the plateau events (Figure 3c). This topology is 247
well explained by the first two principal components (Supplemental Figure 1). So long as 248

external input continues, the network remains largely feed-forward, but upon removal of 249
external inputs, the network is dominated by recurrency, and relaxes into one of its learned 250
fixed points. If partial and intermittent inputs are given, the network can switch between these 251
encoding (feed-forward) and recall (recurrent) modes repeatedly, recovering a new memory 252
each time it samples its inputs (Figure 3d). 253

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

10

Altogether, by using a low-rank formulation of our network recurrency, and gating plateau 254

events to occur in a certain subpopulation of our network, we demonstrated that gBTSP can 255
play a crucial role in the rapid formation of an attractor network. Such a role would be 256
consistent with observations of BTSP in CA310, a region often hypothesized to play the role 257

of an attractor26–30. Future experimental and theoretical work can further illuminate the 258
functional structure of CA3 and the role BTSP plays in forming and maintaining attractor 259

states. 260

Supervised gBTSP can support rapid task learning in feed-forward networks 261

While competitive learning provides an unsupervised framework by which we might 262
understand the function of BTSP during novel, unguided exploration, it still leaves 263

unanswered what role direct supervisory credit assignment might play. A popular hypothesis 264
for BTSP posits that EC3 inputs to the distal dendrites act as supervisory “targets”, which in 265
turn trigger plateau events so that the somatic activity can match this dendritic target5. 266
However, it is not clear what these targets are, i.e. “when” and “where” should a plateau event 267

occur? To rephrase the question in a more quantifiable way: if we define a given loss ℒ as 268

the mean squared error between the network output 𝑦𝑖(𝑡) and some target 𝑦𝑖̂(𝑡), when and 269

Figure 3 – Building an attractor network via gBTSP.

a) A set of spatially tuned noisy inputs are drawn from a simulated agent running along a 1D
treadmill. These inputs project to “visible” neurons through a set of input weights. Visible neurons
project to “seed” neurons via encoding weights, and seed neurons project back to visible neurons
through decoding weights. There are no recurrent weights within each layer. This produces an

effective recurrent weight matrix 𝐖𝐫𝐞𝐜 = 𝐖𝐞𝐖𝐝. A plateau fires at a random seed neuron when

the sum of postsynaptic activity is below some threshold 𝜃. b) Plateau events create seed neurons

which are sensitive to certain combinations of visible neurons. c) The effective recurrent weight

matrix, 𝐖𝐫𝐞𝐜, forms a ring attractor, as viewed in the first two principal components. Each of the

nodes along the attractor is a fixed point created by a plateau event. d) Partial inputs given to the
network for a single timestep at times 0,2,4,6, and 8 seconds recover a memory state of the
network, which persists until the next partial input is presented.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

11

where should we trigger plateau events to minimize this loss? Equipped with our learning 270

rule, we have the tools to answer this question. To this end, we set our expression for Δ𝑊𝑖𝑗 271

from gBTSP (Equation 1) to be equal to expressions for Δ𝑊𝑖𝑗 from traditional supervised 272

learning (in the simplest feed-forward case, the “delta rule”), and solve for 𝑃𝑖(𝑡) (see 273

Methods). In the case of a simple feed-forward network, that expression is the following: 274

𝑃𝑖(𝑡) = 𝜀𝑖(𝑡) ∑
𝑥𝑗(𝑡)

∫ 𝑊𝑘𝑒𝑟𝑛𝑒𝑙(𝑡′ − 𝑡)𝑥𝑗(𝑡′)𝑑𝑡′ − 𝜆𝑊𝑖𝑗
𝑡+∆𝑡

𝑡−∆𝑡

𝑁

𝑗=1

(2) 275

Where is our 𝜀𝑖(𝑡) = 𝑦𝑖̂(𝑡) − 𝑦𝑖(𝑡) task error. This expression gives the plateau function 𝑃𝑖(𝑡) 276

which will descend the loss gradient on a given trial. Equipped with this formula, we can now 277
test the ability of gBTSP to learn in supervised learning contexts. 278

As a sanity check, we first consider the trivial case where our inputs are already spatially 279

selective (such as those arriving from CA3)1,14 and our output represents a single CA1 280

pyramidal cell subject to gBTSP (Figure 4a). We choose a target function 𝑦̂(𝑡) that is a 281

putative place field, modeled as a Gaussian bump centered at a specific location in the 282

environment (see Methods). We find that the network can match this target through plateau-283
driven learning (Figure 4b), demonstrating the fundamental capability of gBTSP to adapt 284
network weights toward a desired output function (Supplemental Figure 2). The plateau 285
function which solves the task is, as expected, centered at the location of our target function, 286

and is most significant within the first 3-5 trials. The field itself also rapidly emerges on this 287
same timescale (Figure 4c), in agreement with experimental results where place fields were 288

formed via the artificial induction of plateaus a) at the location of the desired place field, and 289
b) over only a few (<10) trials1–3. 290

Next, we test our ability to train the network on a more complicated task, in a network with a 291

single hidden layer which is subject to gBTSP. In this task, we model an agent learning to 292
match its location in a 2D arena to some target trajectory in that arena (indicated, say, by 293
targeted illumination). One can consider this task as a navigation-based analogue to smooth 294
pursuit or continuous reaching tasks. Rather than merely generating static spatial patterns, 295

the network now must take a dynamic input 𝑥(𝑡) and learn to generate a dynamic 2D position 296

output 𝑦(𝑡) (see Methods, Figure 4d). After the first 10 trials, the agent has learned to track 297

the target trajectory (Figure 4e). Unlike the previous example, where the plateau location 298

was obvious by design, here it is unclear a priori when and where plateaus should occur in 299
the hidden layer to solve the task. We find that a more complex pattern emerges for the 300

plateau function in a sample neuron, and there is no longer a simple correlation between the 301
network target and the shape of its plateaus (Figure 4f). This is because our expression for 302
the plateau function (Equation 2) will depend on the backpropagated error (see Methods) in 303

networks with more than one layer. Finally, our model predicts that, in a supervised 304

framework, the probability of plateau events in the full population should be inversely 305

correlated with task performance (or positively correlated with task error), decreasing over 306
the course of task learning (Figure 4g). 307

Together, these results demonstrate that we can use gBTSP to descend the gradient of a 308

supervised loss. In other words, the algorithm “distributes” plateau events to certain neurons 309
at certain times in order to optimize overall network performance. If EC3 does indeed dictate 310
plateau induction via supervised “targets”, as has been suggested5, then our framework 311
provides a computational tool to understand and potentially infer the content of these signals. 312
One testable prediction our supervised framework makes is that plateau probability should 313
rise and fall with the inverse of task performance (Figure 4g). 314

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

12

Figure 4 – Feed-forward network rapidly acquires task via supervised gBTSP.

a) Feed-forward network with inputs 𝑥𝑗(𝑡) project to output 𝑦(𝑡) via weights 𝑊𝑗. The inputs 𝑥𝑗(𝑡) are

spatially selective and represent an animal running along a 1D track. b) A unimodal gaussian target
function (dotted black line) and the trained output (blue line) after the first 10 trials of gBTSP training.

c) Top, the plateau function 𝑃(𝑡) over the first 10 trials of training. Middle, the output 𝑦(𝑡) over the

first 10 trials of training. Bottom, the output activity 𝑦(𝑡) over the first 10 trials of training. d) A two-

layer network with inputs 𝑥𝑘(𝑡), hidden units ℎ𝑗(𝑡), and 2D output 𝑦𝑖(𝑡) which represents location.

The target trajectory moves in a set 2D path each trial, and the network must learn to track the
target. e) The target path (dotted black line), and the learned path (colored line). The color here
represents the time at which the agent is in a given location. f) Plateau function for the first unit in

the hidden layer, 𝑃1(𝑡), over the first 10 trials of training. g) Task performance (proportional to 1 -

𝜀𝑖(𝑡)) and plateau probability over the first 10 trials of training.

 315

Supervised gBTSP in recurrent networks fails to support rapid, one-shot learning 316

Finally, we wish to examine the feasibility of our rule in a fully recurrent network (to mimic 317
CA3), learning a supervised task which requires maintenance of an internal memory (via 318

recurrency). Our network consists of hidden units with activation ℎ𝑗(𝑡), recurrently connected 319

via weights 𝑊𝑗𝑖
𝑟𝑒𝑐, and projected to output 𝑦(𝑡) via weights 𝑊𝑗

𝑜𝑢𝑡 (Figure 5a). Internal weights 320

𝑊𝑗𝑖
𝑟𝑒𝑐 are trained indirectly through plateau induction, which is dictated by a recurrent update 321

rule, that we derive by comparing our gBTSP weight update to that of backpropagation 322

through time (BPTT) (see Methods). 323

We illustrate the behavior of the model using a standard delayed-non-match-to-sample 324
(DNMS) task, where our simulated agent must distinguish between sequential pairs of odors, 325
and only “lick” in responses to non-matching pairs (AB, BA), refraining from licking following 326
matching pairs (AA, BB) (Figure 5a). We choose this task because it requires the network to 327
maintain a memory of the first odor’s identity (by leveraging recurrent learning). Moreover, 328

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

13

previous experimental work has shown that animals trained on the same task developed two 329
distinct hippocampal sequences of activity which encoded the identity of the first odor45. 330

To avoid instabilities during training, we combine our update with an adaptive optimizer 331
(ADAM) before updating the weights of the network (see Methods)46. We find that gBTSP 332
can learn the target function, choosing to “lick” when the two samples are non-matching, and 333

forgoing licking when the two samples match (Figure 5b). However, unlike the simpler tasks 334
we have thus far described, training a recurrent network on the DNMS task takes many 335
thousands of trials (Figure 5c). In order to solve the task, the network develops distinct 336
internal representations for the cases when Odor 1 = A, and when Odor 1 = B (Figure 5d). 337
These representations are well explained by their first three principal components, with Odor 338

1 = A trials and Odor 2 = B trials making distinct trajectories in this subspace (Figure 5e, 339
Supplemental Figure 3). These distinct representations act as a memory trace of the first 340
odor’s identity, thereby allowing the network to judge “match” vs. “no-match” upon 341
presentation of the second odor. These representations resemble neural sequences 342

observed in experimental studies45, but as in previous theoretical work47, we found that 343
adding a ramping component to the task target best recovered this sequential activity (see 344
Methods). The plateaus in the network which facilitate learning were constrained to be 345
stochastic and sparse, with only 10% of neurons allowed to plateau on a given trial, and only 346

events which crossed an absolute magnitude threshold contributing to learning (Figure 5f). 347
Though these constraints may result in single trial samples of P(t) which share the sparse 348
nature of plateaus observed in vivo5,48, when we examine the evolution of single cell fields, 349

we see that they develop very slowly, taking thousands of trials (Figure 5g,h). Another 350
alternative would be to increase learning rates, but doing so results in unstable learning 351
(Supplemental Figure 4). In short, spatiotemporal credit assignment in recurrent networks 352

is notoriously difficult49, and unsurprisingly, solving for 𝑃𝑖(𝑡) via gBTSP (as opposed to 353

solving for 𝑊𝑖𝑗 directly via BPTT) does not bypass these limitations. In other words, the 354

standard tool of gradient descent does not stably resolve the question of “where” and “when” 355

BTSP events should occur in a recurrent network in order to solve a supervised task. We will 356
now elaborate on a more complete answer and discuss how we can reconcile these apparent 357

hard limits on the speed of learning with the existence of BTSP in CA3, a highly recurrent 358
network. 359

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

14

Figure 5 – Learning a complex recurrent task with gBTSP requires slow and precise credit
assignment

a) Simulated agents are trained on a delayed-non-match-to-sample (DNMS) task where they must
distinguish between sequential “odor” pairs. The agent must learn to “lick” for non-matching
sequences (AB, BA), and refrain from licking for matching sequences (AA,BB). Right, the model
consists of a recurrent network with two odor inputs, hidden activities 𝐱(𝐭) and recurrent weights
𝐖. The hidden units project to an output 𝐲(𝐭) via weights 𝐕. Recurrent weights 𝐖 are trained via
plateaus occurring in the hidden units according to our gBTSP algorithm (see Methods). Output
weights are trained via the delta rule. b) After training, the model output has learned to lick following
odor 2 in the AB/BA trials while refraining from licking in the AA/BB trials. c) Mean squared error
(MSE) decreases over training, demonstrating successful learning, albeit across tens of thousands
of trials. d) Neural activity patterns across all 100 neurons, averaged over trials which began with
odor A (left column), or odor B (right column). The neurons are sorted by time of maximum activity
in the odor A trials (top row), or time of maximum activity in odor B trials (bottom row). The activity
maps reveal the network has learned distinct sequences of activity for the initial odors, thereby
forming a working memory of the first odor’s identity. e) Activity of each trial type (odor A or odor
B), projected onto the first 3 principal components of the total activity space after training. For

variance explained, see (Supplemental Figure 3). f) Single-trial plateau events across neurons

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

15

and time, showing sparse activation. g) Evolution of activity for a representative single unit during
AA trials over training. The final neural tuning slowly develops over many thousands of trials. h)
Activity of the same representative unit at t = 5 seconds, across AA trials, again highlighting gradual
field development.

 360

Rapid activity changes due to gBTSP are fundamentally limited in deep and/or 361
recurrent networks 362

In shallow feed-forward networks, gBTSP could recover few-shot learning as observed 363
experimentally with BTSP. However, as we have demonstrated particularly for supervised 364

learning in the recurrent network, single-cell learning via gBTSP was very slow. Moreover, 365
attempting to speed-up learning results in instabilities (Supplemental Figure 4). Why is this? 366

For the following, we will step aside from the specifics of gBTSP to make a more general 367

formulation of the problem. Let us assume only that a) plateau events exist, and b), they 368

cause single-cell activity to change by a fixed amount Δ𝑥, remaining agnostic about the 369

type(s) of learning involved in bringing about this change Δ𝑥. We can consider learning via 370

these plateau events from the perspective of optimizing within a loss landscape, taking a step 371

Δ𝑥 along the direction of the descending gradient (first derivative). In landscapes with “fine-372

grained” or “sharp” features, a step of size Δ𝑥 can overshoot the global minimum (Figure 6a). 373

Conventional learning approaches address this issue by reducing step sizes (i.e. taking a 374

step of size δ𝑥 < Δ𝑥) (Figure 6ai), thereby allowing learning to converge to the minimum. 375

An alternative approach involves modifying the loss landscape itself. By "stretching" the 376

landscape, the same step size Δ𝑥 becomes proportionally smaller relative to the landscape 377

features, “smoothing” out sharp features preventing overshooting (Figure 6aii). 378

Mathematically, this “stretching” operation locally shrinks both the first and second derivatives 379

of the loss with respect to activity. Since we are assuming each optimization step takes a 380

fixed step size Δ𝑥 regardless of the gradient (first derivative) amplitude, we can focus on 381

conditions on the second derivative (which we will hereafter refer to, for simplicity, as the local 382

“curvature” 𝐶), and show how this curvature depends on features of the network. Intuitively, 383

learning in this “stretched” landscape might be considered akin to the evolution of microwave 384
popcorn, in the sense that while population-level representations (the popcorn bag) may 385

evolve gradually, individual units (the kernels) undergo rapid, stochastic transitions to their 386
final states on timescales significantly shorter than the overall system evolution. To support 387
this “popcorn”-like approach (which we posit to be more BTSP-like), local curvature must be 388

small (i.e. the loss must be locally “shallow”) to prevent overshooting, but non-zero to enable 389
learning in the first place. 390

In the case of a single-layer feedforward network, inputs 𝑥𝑗(𝑡) project to output 𝑦𝑖(𝑡) =391

 ∑ 𝑊𝑖𝑗𝑥𝑗(𝑡)𝑗 . (Figure 6b). “Plateaus” of size Δ𝑥 occur at the inputs, and the loss is the mean 392

squared error between output 𝐲 and target 𝐲̂. Solving for the curvature, we find that 𝐶 ∝ 𝑊𝑇𝑊 393

(see Methods). It is trivial enough to construct a network where 𝑊𝑇𝑊 is small but non-zero. 394

For example, if 𝑦𝑖(𝑡) receives many inputs, each with a small weight 𝑊𝑖𝑗, any change in a 395

single input 𝑥𝑗(𝑡) will lead to small change in 𝑦𝑖(𝑡). So, in the case of a single layer feed-396

forward network, a small but non-zero curvature is achievable, meaning rapid changes in 397

activity arising from BTSP can lead to stable learning. 398

If we consider a deep feed-forward network with layers 𝑙 and layer specific weights 𝑊𝑙 399

(Figure 6c), the expression for the curvature becomes more complicated, depending on 400

products of all the layer-specific weights together in sequence (𝐶 ∝ (∏ 𝑊𝑙
𝐿
𝑙=1)𝑇 ∏ 𝑊𝑙

𝐿
𝑙=1). 401

Unfortunately, it is not trivial to make these products small but non-zero - in fact, they are the 402

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

16

same troublesome mathematical objects which lead to the problem of exploding and 403
vanishing gradients in gradient descent49–51. 404

Recurrent networks (Figure 6d) can be conceptualized similarly to deep feed-forward 405
networks (Figure 6c), but with each “layer” representing a different timestep in the network, 406

with the weight matrix 𝑊 is applied at each timestep. In turn, curvature of the loss in a 407

recurrent network depends on similar products (𝐶 ∝ (∏ 𝑊
𝑡0
𝑡=1)

𝑇
∏ 𝑊

𝑡0
𝑡=1) which also lead to 408

exploding and vanishing contributions from an update Δ𝑥. 409

These conditions set fundamental limits on both the architectures and the tasks for which 410
deep or recurrent artificial networks can support rapid changes in single-unit activity. Despite 411
these theoretical limitations, few-shot BTSP events have been observed in CA34, which is 412

highly recurrent. The analysis above is idealized, and biological neural networks may have 413
yet unknown mechanisms which allow them to bypass these restrictions. However, if we 414
hypothesize that recurrent connectivity in CA3 is indeed subject to these constraints, 415

specialized architectural features would be required to stabilize learning dynamics and 416
prevent vanishing or exploding effects arising from rapid plasticity events driven by BTSP. 417

Figure 6 – Shallow losses are required for few-shot learning

a) Red, an arbitrary loss function ℒ(𝑥) which depends on the network state, 𝑥. In order to learn,

the network is restricted to make discrete jumps of size Δ𝑥. Blue dotted circles, previous values of

ℒ(𝑥). Filled blue circle, current value of ℒ(𝑥). Top middle, smaller discrete jumps of size δ𝑥 are

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

17

sufficient to reach our learning objective, but results in a slow evolution of network activity over
learning (“dough” learning, right). Bottom middle, stretching the loss function also allows us to reach

our learning objective, while maintaining a fixed step size Δ𝑥. Single unit activities rapidly change

over the course of learning, even if the population representation evolves slowly (“popcorn”
learning). This stretching picture requires a shallow but non-zero curvature (right). b) Shallow feed-
forward network, and its associated curvature. c) Deep feed-forward network, with L layers, and its
associated curvature. d) Recurrent network which runs for T timesteps, and its associated
curvature. Note that this picture can be related to that of the deep feed-forward network, if we
imagine each “layer” to be the activity of the recurrent net at a time t, and the weights between
these layers to be the shared weight matrix W.

 418

Discussion 419

The discovery of Behavioral Timescale Synaptic Plasticity (BTSP) unearthed an apparent 420

paradox in our understanding of learning in the hippocampus. One the one hand, successful 421
models of complex population-level hippocampal function (e.g. the formation of cognitive 422
maps52–54) depend critically on recurrent computation, and in turn, seem to depend on the 423

slow, precise training of recurrent weights. On the other hand, experiments in hippocampus 424
observe a learning rule (BTSP) which is very fast and has a very distinct lack of temporal 425
specificity. BTSP's hallmark features—its wide temporal kernel spanning seconds and its 426

rapid, one-shot field formation—run counter to conventional wisdom that precise, gradual 427
weight changes are necessary for stable learning. To examine the computational implications 428
of BTSP, we proposed a generalized mathematical framework, gBTSP, for which plasticity is 429

governed by wide temporal kernels and a postsynaptic “plateau function” P(t). We test its 430
properties across different network architectures (feed-forward and recurrent) and learning 431

paradigms (supervised and unsupervised). 432

We demonstrated that unsupervised gBTSP in feed-forward networks maps well onto the 433
framework of competitive learning, wherein neurons "compete" to represent distinct regions 434
of the input space. This framework accounts for experimentally observed phenomena, 435

including the rapid formation of place fields and their distribution across the environment. If 436
we assume BTSP is operating according to unsupervised principles, our model predicts that 437

plateau probability should inversely correlate with network activity, offering a testable 438
hypothesis for future experiments. Moreover, we found that individual neurons can undergo 439
rapid remapping while the population-level representation maintains coverage of the 440

environment—exhibiting representational drift primarily through index “shuffling” rather than 441
degradation of the underlying representation. However, we only consider a few hundred trials 442

of unsupervised learning, so it remains unclear to what extent this model can explain recent 443
experimental results regarding place field stability over days55 or over the course of goal-444
oriented spatial learning56. One could also imagine extending our framework by considering 445

other forms of competitive learning, such as self-organizing maps19,57, which assume an 446
underlying functional structure which is maintained during learning. Such an extension might 447
explain the observations of functional clustering of field formation events around “seed” 448
plateau neurons58, and other topographically related phenomenon observed in plateau 449

generation59. 450

In recurrent networks like CA3, we demonstrated that unsupervised gBTSP can facilitate 451
attractor learning when implemented with appropriate architectural constraints. This aligns 452
with previous theoretical work showing BTSP's suitability for memory storage in discrete 453
attractor networks4. To preserve stability during learning, we used a low-rank 454
parameterization of the network’s recurrent weights, only applying gBTSP to the “encoding” 455
portion of this parameterization. However, there are also other promising avenues for 456

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

18

considering BTSP in the context of unsupervised, recurrent learning. For example, under 457
certain conditions STDP in a recurrent network can approximate Hidden Markov Model 458

Learning, a very powerful tool for discovering underlying latent structure60. Recent 459

experimental work which recorded hippocampal activity over the course of learning observed 460
an orthogonalization of the latent map61 – a feature they found was best described by 461
networks which learned HMMs60,62, including a version of the STDP-recurrent network. 462
Although BTSP learns with a much larger temporal kernel than STDP, they have a similar 463
fundamental structure. One can imagine that a mapping of BTSP onto HMM learning may be 464

possible, though the rapid learning and large temporal kernel of BTSP present non-trivial 465
challenges to stability and convergence. 466

For learning based on explicit error functions (i.e. supervised learning), we derived analytical 467
expressions that determine when and where plateau events should occur to optimize task 468
performance. This formulation allows us to understand BTSP in the context of gradient-based 469
learning, with the plateau function effectively distributing "credit" for errors across the 470

network. Further, because we have an explicit analytical expression for our plateau function, 471
we can constrain it to be stochastic and sparse, akin to BTSP events observed in vivo5,48. We 472
show that gBTSP can successfully learn feed-forward tasks, while retaining key features of 473
observed BTSP, such as few-shot learning. 474

While our supervised gBTSP successfully learned complex tasks in feed-forward networks, 475
maintaining the rapid learning characteristic of BTSP, deep recurrent networks proved more 476
challenging. We showed that these challenges arise from fundamental stability limitations of 477

large, rapid activity changes in deep and recurrent networks, limitations which are similar 478
mathematically to exploding or vanishing gradients in backpropagation49–51. This presents an 479

apparent paradox, as BTSP has been experimentally observed in the highly recurrent CA3 480
region. Perhaps structures such as so-called orthogonal or unitary networks, which preserve 481
spectral norms of the recurrent weights (and thereby maintain stable gradient flow), can offer 482

a solution, but training in these networks is difficult to reconcile with gBTSP63–65. Alternatively, 483

it might be sensible to model CA3 as dynamically regulating its recurrence, gating certain 484
pathways such that they behave as feed-forward networks during learning episodes (note 485
that we used this method earlier to train our unsupervised recurrent network; Figure 3). 486

Our analysis has focused on a “strong" hypothesis, by which hippocampal learning is 487

governed mainly via BTSP, and the plateau events follow some unifying principle (such as 488
minimizing a particular error or loss function). We call this the “strong” assumption, because 489

a) it remains unknown what fraction of overall learning is due to discrete, rapid BTSP events, 490
b) it is highly likely that multiple forms of plasticity, including BTSP, are active simultaneously, 491
and c) it is unclear if plateau-driven learning is guided by any sort of governing computational 492
principle. A “softer” hypothesis might posit that BTSP is but a small fraction of hippocampal 493
learning, and/or it is relegated to a trivial function such as taking mere random “snapshots” 494

of complex representations occurring in other cortical areas. While this “soft” hypothesis 495
remains worthy of consideration and further study, rates of BTSP appear to be relatively high, 496

particularly in novel environments5,48, and previous theoretical work suggests that purely 497
random plateau occurrence is inconsistent with the task-specific formation of complex 498
hippocampal representations (i.e. splitter cells)66. 499

The limitations we identify suggest that while BTSP may indeed play a crucial role in 500
hippocampal learning, at the very least, its implementation likely requires specialized circuit 501
designs and/or other forms of plasticity to maintain stability. Still, the stark contrast between 502

traditional gradient-based learning (where both population and single-unit representations 503
evolve gradually), and BTSP-like learning, (where individual units can change rapidly while 504

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

19

population representations evolve more gradually), highlights a fundamental difference 505
between learning in artificial and biological systems. 506

Ultimately, this work introduces a generalized mathematical and analytical framework for 507
BTSP (gBTSP) and uses this framework to investigate how plateau events may be distributed 508
to solve learning tasks. Our findings suggest that while placing the entire burden of credit 509

assignment on plateau events alone may be insufficient to explain complex aspects of 510
hippocampal learning, BTSP is capable of rapid memory formation and latent encoding, 511
particularly in feed-forward, and constrained recurrent networks. Future work should identify 512
the biological circuits and plasticity mechanisms that stabilize hippocampal networks 513
undergoing BTSP, particularly within CA3, to better understand how BTSP contributes to the 514

development of hippocampal cognitive functions. 515

516

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

20

 517

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

21

Methods 518

All parameters for the following methods are included in Table 1. 519

 520

Generalized Learning Rule for Behavioral Timescale Plasticity 521

To begin our derivation, we consider the simple case of a single postsynaptic neuron which 522
triggers an instantaneous plateau event, and a single presynaptic neuron which fires a spike 523

(Figure 1a). We assume the postsynaptic plateau updates weight 𝑊 via some function, 524

𝑊𝑘𝑒𝑟𝑛𝑒𝑙, which depends on the timing of the presynaptic spike relative to the plateau: 525

Δ𝑊 = 𝑊𝑘𝑒𝑟𝑛𝑒𝑙(𝑡𝑝𝑟𝑒 − 𝑡𝑝𝑙𝑎𝑡𝑒𝑎𝑢) (3) 526

Specifically, we choose a 𝑊𝑘𝑒𝑟𝑛𝑒𝑙 such that the application of our learning rule matches 527

observed plasticity following application of a single plateau and bursting inputs in vitro (Figure 528

1d)2. The specific form of the weight kernel is: 529

𝑊𝑘𝑒𝑟𝑛𝑒𝑙(𝑡 − 𝑡𝑝) = {
𝑒(𝑡−𝑡𝑝)/𝜏𝑏 , 𝑡 < 𝑡𝑝

𝑒−(𝑡−𝑡𝑝)/𝜏𝑓 , 𝑡 ≥ 𝑡𝑝
(4) 530

Where 𝑡𝑝 is the time of the plateau, and 𝜏𝑏 and 𝜏𝑏 are “backward” and “forward” time 531

constants. 532

Next, we relax our previous assumption that there is a single presynaptic neuron which fires 533

a single spike, instead describing the continuous activity of presynaptic neuron 𝑗 at time 𝑡 as 534

𝑥𝑗(𝑡) (Figure 1b). Now, the change in weights following a single plateau depends on the 535

integrated presynaptic activity across a temporal window ∆𝑡 relative to the time of the 536

plateau): 537

Δ𝑊𝑗 = ∫ 𝑊𝑘𝑒𝑟𝑛𝑒𝑙(𝑡 − 𝑡𝑝𝑙𝑎𝑡𝑒𝑎𝑢)𝑥𝑗(𝑡) 𝑑𝑡
𝑡𝑝𝑙𝑎𝑡𝑒𝑎𝑢+∆𝑡

𝑡𝑝𝑙𝑎𝑡𝑒𝑎𝑢−∆𝑡

(5) 538

Note that if 𝑥𝑗(𝑡) is taken to be a delta function 𝛿(𝑡 − 𝑡𝑝𝑟𝑒), Equation 5 reduces to Equation 539

3. Further, the asymmetric offset of observed plasticity in Figure 1e is a direct consequence 540

of the shape of 𝑊𝑘𝑒𝑟𝑛𝑒𝑙 (Equation 4). For some intuition on why this is the case, notice that 541

Equation 5 is equivalent to a cross-correlation, so we can imagine “sliding” or “smearing” 542

𝑊𝑘𝑒𝑟𝑛𝑒𝑙 across the input 𝑥𝑗(𝑡) to get a given horizontal slice of Figure 1e. 543

To match experimental data showing that the amplitude of the formed field depends on the 544

initial membrane voltage of the postsynaptic cell1, we add in a dependence on the synaptic 545
strength prior to the plateau event, leading to the equation: 546

Δ𝑊𝑗 = ∫ 𝑊𝑘𝑒𝑟𝑛𝑒𝑙(𝑡 − 𝑡𝑝𝑙𝑎𝑡𝑒𝑎𝑢)𝑥𝑗(𝑡) 𝑑𝑡
𝑡𝑝𝑙𝑎𝑡𝑒𝑎𝑢+∆𝑡

𝑡𝑝𝑙𝑎𝑡𝑒𝑎𝑢−∆𝑡

− 𝜆𝑊𝑗 (6) 547

where the weight dependence is parametrized by 𝜆. Note since Δ𝑊 is only applied when a 548

plateau occurs, −𝜆𝑊 is not a continuous weight decay. 549

Finally, we want to consider the case for which there are multiple postsynaptic neurons, each 550

of which may have multiple plateaus. So, we introduce 𝑃𝑖(𝑡), a function representing the post-551

synaptic plateau potential at time 𝑡 for neuron 𝑖. Now, the change in weights depends on an 552

integral over the presynaptic activity, as well as an integral over any post-synaptic plateaus 553
(Figure 1c): 554

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

22

Δ𝑊𝑖𝑗 = ∫ 𝑃𝑖(𝑡) [∫ 𝑊𝑘𝑒𝑟𝑛𝑒𝑙(𝑡′ − 𝑡)𝑥𝑗(𝑡′)𝑑𝑡′ − 𝜆𝑊𝑖𝑗
𝑡+∆𝑡

𝑡−∆𝑡

] 𝑑𝑡
𝑇

0

(1) 555

in which weight 𝑊𝑖𝑗 is updated after each trial according to the presence of 𝑃𝑖(𝑡). Note that if 556

𝑃𝑖(𝑡) is taken to be a delta function 𝛿(𝑡 − 𝑡𝑝𝑙𝑎𝑡𝑒𝑎𝑢), Equation 1 reduces to Equation 6. Since 557

Equation 1 is derived from various degrees of generalization (Equations 3, 5, and 6), we call 558
this equation “generalized BTSP”. 559

Unsupervised Feed-Forward Task 560

Notice in Equation 6, that if we take the temporal kernel 𝑊𝑘𝑒𝑟𝑛𝑒𝑙(𝑡 − 𝑡𝑝𝑙𝑎𝑡𝑒𝑎𝑢) to be the delta 561

function 𝛿(𝑡 − 𝑡𝑝𝑙𝑎𝑡𝑒𝑎𝑢), the integral over time goes away and we get the following expression: 562

Δ𝑊𝑗 = 𝑥𝑗(𝑡𝑝𝑙𝑎𝑡𝑒𝑎𝑢) − 𝜆𝑊𝑗 (7) 563

So, in this approximation, upon each plateau event, the weights would move towards a fixed 564

point 𝑊𝑗 =
1

𝜆
𝑥𝑗(𝑡𝑝𝑙𝑎𝑡𝑒𝑎𝑢), akin to classical conceptions of “competitive learning”17–20. 565

For the 1-D unsupervised feed-forward task in Figure 2b-e, we assume an animal is running 566

along a 1-D treadmill at constant velocity 𝛽, i.e. the animal’s position 𝑢(𝑡) = 𝛽𝑡. The external 567

sensory input is modeled in the form of stereotypical 1-D tuning curves with added noise: 568

xj(𝑡) = e
−(

𝑢(𝑡)−𝑢𝑗

2𝜎2)
2

+ 𝑁(0, 𝜎𝑁²) (8) 569

where j indexes over 𝑁 total inputs, and 𝑢𝑗 are the locations (or equivalently, times) of the 570

tuning curve centers, which have standard deviation . Zero-mean Gaussian noise is added, 571

with standard deviation 𝜎𝑁. These inputs are connected to an output 𝑦𝑖(𝑡) by feed-forward 572

weights 𝑊𝑖𝑗: 573

𝑦𝑖(𝑡) = ∑ 𝑊𝑖𝑗𝑥𝑗(𝑡)

𝑗

(9) 574

which are learned via gBTSP. We used the following rule to trigger a plateau: 575

𝑖𝑓 ∑ 𝑦𝑖(𝑡) < 𝜃:
𝑖

 𝑃𝐾(𝑡) = 1 (10) 576

Where 𝜃 is a firing rate threshold, and 𝐾 is a random index from 1 to N. A single plateau can 577

drive the network above the threshold 𝜃 (at a given time). Weights were initialized at zero and 578

the network was trained on 100 laps. 579

For the 2-D unsupervised feed-forward task in Figure 2f-h, we assume an animal begins at 580

a random location inside a 2-D box, (𝑢0, 𝑣0) and takes 𝑇 steps of a random walk along a 581

trajectory (𝑢(𝑡), 𝑣(𝑡)). The external sensory input is modeled in the form of stereotypical 2-D 582

tuning curves with added noise: 583

xj(𝑡) = e
−(

𝑢(𝑡)−𝑢𝑗

2𝜎2)
2

e
−(

𝑣(𝑡)−𝑣𝑗

2𝜎2)
2

+ 𝑁(0, 𝜎𝑁²) (11) 584

where j indexes over 𝑁2 total inputs, and (𝑢𝑗 , 𝑣𝑗) are the 2-D locations of the tuning curve 585

centers, which have standard deviation . Zero-mean Gaussian noise is added, with standard 586

deviation 𝜎𝑁 . These inputs are connected to an output 𝑦𝑖(𝑡) by feed-forward weights 𝑊𝑖𝑗 587

(Equation 9), which are learned via gBTSP, just as in the 1-D case. 588

 589

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

23

Unsupervised Recurrent Task 590

For the unsupervised recurrent task in Figure 3, we assume an animal is running along a 1-591

D treadmill at constant velocity 𝛽, i.e. the animal’s position 𝑢(𝑡) = 𝛽𝑡. The external sensory 592

input is modeled the same as for the unsupervised feed-forward task (Equation 8). There are 593

two populations of neurons, “visible” neurons 𝑥𝑗(𝑡) and “seed” neurons 𝑠𝑖(𝑡) . These 594

populations connect recurrently to each other, but not amongst themselves. Visible neurons 595

receive external input 𝑜𝑘(𝑡), and only the seed neurons eligible for plateaus (Figure 3a). The 596

activity of these two populations is governed by the following equations: 597

𝑠𝑖(𝑡) = ∑ 𝑊𝑖𝑗
𝑒𝑥𝑗(𝑡 − 1)

𝑗
(12) 598

𝑥𝑗(𝑡) = (1 − 𝛼) ∑ 𝑊𝑗𝑖
𝑑𝑠𝑖(𝑡)

𝑖
+ 𝛼 ∑ 𝑊𝑗𝑘

𝑖𝑛𝑜𝑘(𝑡)
𝑘

(13) 599

where 𝑊𝑖𝑗
𝑒 are “encoding” weights, 𝑊𝑗𝑖

𝑑 are “decoding” weights, and 𝑊𝑗𝑘
𝑖𝑛 are input weights. 𝛼 600

is a gating variable governed by the norm of the external input: when external input is high, 601
recurrent input is low, and vice versa: 602

𝛼 =
𝐶 − ‖𝐨(𝐭)‖

𝐶
(14) 603

Where C is a constant and ‖𝐨(𝐭)‖ is the norm of the external input. In the limit of no external 604

input (𝛼 = 0), our equation for the visible neurons reduces to: 605

𝑥𝑗(𝑡) = ∑ ∑ 𝑊𝑗𝑖
𝑑𝑊𝑖𝑗′

𝑒 𝑥𝑗′(𝑡 − 1)
𝑖𝑗′

= ∑ 𝑊𝑗𝑗′
𝑟𝑒𝑐𝑥𝑗′(𝑡 − 1)

𝑗′
(15) 606

where 𝑊𝑗𝑗′
𝑟𝑒𝑐 is the low-rank recurrence, ∑ 𝑊𝑗𝑖

𝑑𝑊𝑖𝑗′
𝑒

𝑖 of the visible neurons. However, in the limit 607

of large external input, our network becomes effectively feed-forward: 608

𝑥𝑗(𝑡) = ∑ 𝑊𝑗𝑘
𝑖𝑛𝑜𝑘(𝑡)

𝑘
(16) 609

This dual nature of the network allows us to take advantage of recurrent computation in the 610
low-input phase, while making use of unsupervised, feed-forward gBTSP in the high-input 611

phase. Encoding weights are learned via the same competitive learning algorithm as the 612
feed-forward case (Equation 10). The decoder weights are set to be the transpose of the 613

encoder weights. Following a single lap of training, a test phase was conducted, whereby 614
inputs were only shown for one timestep before being removed. The inputs were shown at 615
times 0, 2, 4, 6, and 8 seconds. 616

 617

Supervised Feed-Forward Task 618

In order to apply plateaus in the supervised context, we derive an expression for 𝑃(𝑡) which 619

minimizes a given error/loss. Assuming some target output 𝑦̂(𝑡), and a loss function ℒ (here 620

we choose a mean squared error loss). 621

ℒ =
1

2
[𝑦̂(𝑡) − 𝑦(𝑡)]2. (17) 622

We can compare our gBTSP weight update 623

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

24

Δ𝑊𝑖𝑗 = ∫ 𝑃𝑖(𝑡) [∫ 𝑊𝑘𝑒𝑟𝑛𝑒𝑙(𝑡′ − 𝑡)𝑥𝑗(𝑡′)𝑑𝑡′ − 𝜆𝑊𝑖𝑗

𝑡+∆𝑡

𝑡−∆𝑡

] 𝑑𝑡
𝑇

0

(1) 624

 625

to that of simple backpropagation (for a single layer, this is just the delta rule): 626

Δ𝑊𝑖𝑗 = ∫ 𝜀𝑖(𝑡)𝑥𝑗(𝑡)𝑑𝑡
𝑇

0

(18) 627

 628

Where the error term 𝜀𝑖(𝑡) = 𝑦𝑖̂(𝑡) − 𝑦𝑖(𝑡) . By setting these two equations to be equal, we 629

can find an expression for the function 𝑃𝑖(𝑡): 630

𝑃𝑖(𝑡) = 𝜀𝑖(𝑡) ∑
𝑥𝑗(𝑡)

∫ 𝑊𝑘𝑒𝑟𝑛𝑒𝑙(𝑡′ − 𝑡)𝑥𝑗(𝑡′)𝑑𝑡′ − 𝜆𝑊𝑖𝑗
𝑡+∆𝑡

𝑡−∆𝑡

𝑁

𝑗=1

(2) 631

 632

For the first task, we consider a shallow feed-forward network (Equation 9). We choose a 633

target function 𝑦̂(𝑡) that is a putative place field, modeled as a Gaussian bump centered at a 634

specific location in the environment: 635

𝑦̂(𝑡) = e
−(

𝑢(𝑡)−𝑢0

2𝜎2)
2

(19) 636

Where 𝑢(𝑡) is the animal’s position, and 𝑢0 is the location of the tuning curve center, which 637

has standard deviation . 638

For the navigation task, the network has three layers (input, hidden, output), for which only 639

the hidden neurons can receive plateaus, i.e. only the input to hidden weights 𝑊𝑗𝑘 are 640

trainable: 641

𝑦𝑖(𝑡) = ∑ 𝑉𝑖𝑗ℎ𝑗(𝑡)

𝑗

ℎ𝑗(𝑡) = ∑ 𝑊𝑗𝑘𝑥𝑘(𝑡)

𝑘

(20)
 642

The 2D target trajectory for the task is: 643

𝑦̂1(𝑡) = cos (
2𝜋𝑡

𝑇
) +

1

2
sin (

4𝜋𝑡

𝑇
) +

1

4
cos(

8𝜋𝑡

𝑇
)

𝑦̂2(𝑡) = sin (
2𝜋𝑡

𝑇
) +

1

2
sin (

4𝜋𝑡

𝑇
) +

1

4
sin(

8𝜋𝑡

𝑇
) (21)

 644

We train the network (Equations 1 and 2) for 100 trials on both tasks. 645

 646

Supervised Recurrent Task 647

For our recurrent task, a network of hidden units with activation ℎ𝑗(𝑡) is recurrently connected 648

via weights 𝑊𝑖𝑗
𝑟𝑒𝑐. The dynamics of the hidden units are governed by the following: 649

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

25

 𝜏
𝑑ℎ𝑖(𝑡)

𝑑𝑡
= −ℎ𝑖(𝑡 − 1) + 𝜑 (∑ 𝑊𝑖𝑗

𝑟𝑒𝑐ℎ𝑗(𝑡 − 1) + ∑ 𝑊𝑖𝑗
𝑖𝑛𝑥𝑘(𝑡)

𝑘𝑗

) (22) 650

here 𝜑 is a non-linear function (i.e. tanh) of the recurrent inputs, and these activations are 651

initialized at ℎ0. Input 𝑥𝑘(𝑡) is projected to the network via input weights 𝑊𝑖𝑘
𝑖𝑛. We initialize the 652

internal weights as a random Gaussian matrix with a gain factor 𝑔. These hidden units project 653

to output 𝑦(𝑡) via weights 𝑊𝑖
𝑜𝑢𝑡: 654

𝑦(𝑡) = ∑ 𝑊𝑗
𝑜𝑢𝑡ℎ𝑗(𝑡)

𝑗

(23) 655

To find 𝑃𝑖(𝑡) which minimizes the error in a recurrent network, we again compare our gBTSP 656

rule 657

Δ𝑊𝑖𝑗 = ∫ 𝑃𝑖(𝑡) [∫ 𝑊𝑘𝑒𝑟𝑛𝑒𝑙(𝑡′ − 𝑡)𝑥𝑗(𝑡′)𝑑𝑡′ − 𝜆𝑊𝑖𝑗

𝑡+∆𝑡

𝑡−∆𝑡

] 𝑑𝑡
𝑇

0

(1) 658

to the full backpropagation through time update: (for a full derivation, see Murray, 201913): 659

Δ𝑊𝑖𝑗 = ∫ 𝑧𝑖(𝑡)𝜑′ (∑ 𝑊𝑖𝑗
𝑟𝑒𝑐ℎ𝑗(𝑡 − 1)

𝑗

+ ∑ 𝑊𝑖𝑘
𝑖𝑛𝑥𝑘(𝑡)

𝑘

) 𝑑𝑡
𝑇

0

(24) 660

where 𝜑′ is the derivative of our activation function, and the Lagrange multiplier 𝑧𝑖(𝑡) is equal 661

to: 662

𝑧𝑖(𝑡) = (1 −
1

𝜏
) 𝑧𝑖(𝑡 + 1)

+
1

𝜏
∑ 𝑧𝑖(𝑡 + 1)𝜑′(𝑢𝑖(𝑡 + 1))𝑊𝑗𝑖

𝑟𝑒𝑐

𝑁

𝑗=1

+ ∑ 𝑊𝑖𝑙𝜀𝑙(𝑡)

𝑁𝑙

𝑙=1

 (25)

 663

where 𝑢𝑖(𝑡) is our total input current to the unit, i.e., 664

𝑢𝑖(𝑡) = ∑ 𝑊𝑖𝑗
𝑟𝑒𝑐ℎ𝑗(𝑡 − 1)

𝑗

+ ∑ 𝑊𝑖𝑘
𝑖𝑛𝑥𝑘(𝑡)

𝑘

(26) 665

The Lagrange multiplier 𝑧𝑖(𝑡) is calculated in the “backwards” phase, by starting with the 666

terminal value, 𝑧𝑖(𝑇), and working back to 𝑧𝑖(0). 𝑧𝑖(𝑇) takes the form: 667

𝑧𝑖(𝑇) = ∑ 𝑊𝑖𝑙𝜀𝑙(𝑇)

𝑁𝑙

𝑙=1

(27) 668

By setting Equation 1 and Equation 24 to be equal, we solve for the plateau function and 669

get the following expression: 670

𝑃𝑖(𝑡) =
𝑧𝑖(𝑡)

𝜏
𝜑′(𝑢𝑖(𝑡)) ∑

ℎ𝑗(𝑡 − 1)

∫ 𝑊𝑘𝑒𝑟𝑛𝑒𝑙(𝑡′ − 𝑡)𝑥𝑗(𝑡′)𝑑𝑡′ − 𝜆𝑊𝑖𝑗
𝑡+∆𝑡

𝑡−∆𝑡𝑗

 (28) 671

The delayed non-match to sample task consists of two inputs, representing odor A and odor 672

B, and two outputs: one representing licking probability and the other which represents a 673

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

26

ramping temporal component. This component encourages the network to develop 674

sequential internal representations47. For each trial, a random odor combination 675

(AA,AB,BA,BB) was selected. The first odor input was presented for the first 1s of the trial, 676

and the second odor input was present between 7-8s. No odor inputs were given in the 677

delay period. For non-matching pairs, the target for licking probability was 1 for all timesteps 678

after 8 seconds, and 0 otherwise. For matching pairs, the target licking probability was 679

always 0. Output weights were trained using the delta rule, while recurrent weights were 680

trained using our gBTSP update (Equation 1), after selecting plateaus (Equation 28). The 681

network was trained for 50,000 trials, with the gBTSP update (Equation 1) passed through a 682

momentum-based optimizer (ADAM46) to avoid critical instabilities (see Table 1 for 683

parameters). 684

 685

Constraints on Few-Shot Learning 686

In the case of the shallow network, inputs 𝑥𝑗(𝑡) project to output 𝑦𝑖(𝑡) = ∑ 𝑊𝑖𝑗𝑥𝑗(𝑡)𝑗 . (Figure 687

6b). “Plateaus” of size Δ𝑥 occur at the inputs, and the loss is the mean squared error between 688

output 𝐲 and target 𝐲̂. Solving for the Hessian (local curvature), we find: 689

ℒ =
1

2
(𝑦̂ − 𝑊𝑥)𝑇(𝑦̂ − 𝑊𝑥)

𝜕ℒ

𝜕𝑥
= −𝑊𝑇(𝑦̂ − 𝑊𝑥)

𝜕2ℒ

𝜕𝑥𝜕𝑥𝑇
=

𝜕

𝜕𝑥𝑇
(

𝜕ℒ

𝜕𝑥
) = 𝑊𝑇𝑊 (29)

 690

 691

If we consider a deep feed-forward network with layers 𝑙 and layer specific weights 𝑊𝑙 692

(Figure 6c), the expression for the Hessian becomes more complicated: 693

ℒ =
1

2
(𝑦̂ − ∏ 𝑊𝑙𝑥

𝐿

𝑙=1

)𝑇(𝑦̂ − ∏ 𝑊𝑙𝑥

𝐿

𝑙=1

)

𝜕ℒ

𝜕𝑥
= −(∏ 𝑊𝑙

𝐿

𝑙=1

)𝑇(𝑦̂ − ∏ 𝑊𝑙𝑥

𝐿

𝑙=1

)

𝜕2ℒ

𝜕𝑥𝜕𝑥𝑇
=

𝜕

𝜕𝑥𝑇
(

𝜕ℒ

𝜕𝑥
) = (∏ 𝑊𝑙

𝐿

𝑙=1

)𝑇 ∏ 𝑊𝑙

𝐿

𝑙=1

(30)

 694

 695

For recurrent networks (Figure 6d), the Hessian in a recurrent network depends on the 𝑇th 696

product of 𝑊, which also leads to exploding and vanishing contributions from an update Δ𝑥: 697

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

27

ℒ =
1

2
(𝑦̂ − ∏ 𝑊𝑥

𝑡0

𝑡=1

)𝑇(𝑦̂ − ∏ 𝑊𝑥

𝑡0

𝑡=1

)

𝜕ℒ

𝜕𝑥
= −(∏ 𝑊

𝑡0

𝑡=1

)𝑇(𝑦̂ − ∏ 𝑊𝑥

𝑡0

𝑡=1

)

𝜕2ℒ

𝜕𝑥𝜕𝑥𝑇
=

𝜕

𝜕𝑥𝑇
(

𝜕ℒ

𝜕𝑥
) = (∏ 𝑊

𝑡0

𝑡=1

)𝑇 ∏ 𝑊

𝑡0

𝑡=1

(31)

 698

These conditions set fundamental limits on both the architectures and the tasks for which 699
deep or recurrent artificial networks can support rapid changes in single-unit activity. 700

 701

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

28

References 702

1. Milstein, A. D. et al. Bidirectional synaptic plasticity rapidly modifies hippocampal representations. eLife 703

10, e73046 (2021). 704

2. Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S. & Magee, J. C. Behavioral time scale synaptic 705

plasticity underlies CA1 place fields. Science 357, 1033–1036 (2017). 706

3. Bittner, K. C. et al. Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. 707

Nat. Neurosci. 18, 1133–1142 (2015). 708

4. Li, Y., Briguglio, J. J., Romani, S. & Magee, J. C. Mechanisms of memory-supporting neuronal dynamics in 709

hippocampal area CA3. Cell 0, (2024). 710

5. Grienberger, C. & Magee, J. C. Entorhinal cortex directs learning-related changes in CA1 representations. 711

Nature 611, 554–562 (2022). 712

6. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015). 713

7. Werbos, P. J. Backpropagation through time: what it does and how to do it. Proc. IEEE 78, 1550–1560 714

(1990). 715

8. Laje, R. & Buonomano, D. V. Robust timing and motor patterns by taming chaos in recurrent neural 716

networks. Nat. Neurosci. 16, 925–933 (2013). 717

9. DePasquale, B., Cueva, C. J., Rajan, K., Escola, G. S. & Abbott, L. F. full-FORCE: A target-based method for 718

training recurrent networks. PLOS ONE 13, e0191527 (2018). 719

10. Lillicrap, T. P., Cownden, D., Tweed, D. B. & Akerman, C. J. Random synaptic feedback weights support 720

error backpropagation for deep learning. Nat. Commun. 7, 13276 (2016). 721

11. Lillicrap, T. P. & Santoro, A. Backpropagation through time and the brain. Curr. Opin. Neurobiol. 55, 82–722

89 (2019). 723

12. Williams, R. J. & Zipser, D. A Learning Algorithm for Continually Running Fully Recurrent Neural 724

Networks. Neural Comput. 1, 270–280 (1989). 725

13. Murray, J. M. Local online learning in recurrent networks with random feedback. eLife 8, e43299 (2019). 726

14. Cone, I. & Shouval, H. Z. Behavioral Time Scale Plasticity of Place Fields: Mathematical Analysis. Front. 727

Comput. Neurosci. 15, (2021). 728

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

29

15. Li, P. Y. & Roxin, A. Rapid memory encoding in a recurrent network model with behavioral time scale 729

synaptic plasticity. PLOS Comput. Biol. 19, e1011139 (2023). 730

16. Wu, Y. & Maass, W. A simple model for Behavioral Time Scale Synaptic Plasticity (BTSP) provides content 731

addressable memory with binary synapses and one-shot learning. Nat. Commun. 16, 342 (2025). 732

17. Fukushima, K. Cognitron: A self-organizing multilayered neural network. Biol. Cybern. 20, 121–136 733

(1975). 734

18. Grossberg, S. Adaptive pattern classification and universal recoding: I. Parallel development and coding 735

of neural feature detectors. Biol. Cybern. 23, 121–134 (1976). 736

19. Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 737

(1982). 738

20. Rumelhart, D. E. & Zipser, D. Feature Discovery by Competitive Learning. Cogn. Sci. 9, 75–112 (1985). 739

21. Wallis, G. & Rolls, E. T. INVARIANT FACE AND OBJECT RECOGNITION IN THE VISUAL SYSTEM. Prog. 740

Neurobiol. 51, 167–194 (1997). 741

22. Fritzke, B. Growing cell structures—A self-organizing network for unsupervised and supervised learning. 742

Neural Netw. 7, 1441–1460 (1994). 743

23. Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013). 744

24. Geva, N., Deitch, D., Rubin, A. & Ziv, Y. Time and experience differentially affect distinct aspects of 745

hippocampal representational drift. Neuron 111, 2357-2366.e5 (2023). 746

25. Rubin, A. et al. Revealing neural correlates of behavior without behavioral measurements. Nat. 747

Commun. 10, 4745 (2019). 748

26. Khona, M. & Fiete, I. R. Attractor and integrator networks in the brain. Nat. Rev. Neurosci. 23, 744–766 749

(2022). 750

27. Samsonovich, A. & McNaughton, B. L. Path Integration and Cognitive Mapping in a Continuous Attractor 751

Neural Network Model. J. Neurosci. 17, 5900–5920 (1997). 752

28. Rolls, E. T. An attractor network in the hippocampus: Theory and neurophysiology. Learn. Mem. 14, 753

714–731 (2007). 754

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

30

29. Wills, T. J., Lever, C., Cacucci, F., Burgess, N. & O’Keefe, J. Attractor Dynamics in the Hippocampal 755

Representation of the Local Environment. Science (2005) doi:10.1126/science.1108905. 756

30. Tsodyks, M. & Sejnowski, T. J. Associative memory and hippocampal place cells. Int. J. Neural Syst. 6, 81–757

86 (1995). 758

31. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. 759

Proc. Natl. Acad. Sci. 79, 2554–2558 (1982). 760

32. Abu-Mostafa, Y. & St. Jacques, J. Information capacity of the Hopfield model. IEEE Trans. Inf. Theory 31, 761

461–464 (1985). 762

33. Agmon, H. & Burak, Y. A theory of joint attractor dynamics in the hippocampus and the entorhinal cortex 763

accounts for artificial remapping and grid cell field-to-field variability. eLife 9, e56894 (2020). 764

34. Burak, Y. & Fiete, I. R. Accurate Path Integration in Continuous Attractor Network Models of Grid Cells. 765

PLOS Comput. Biol. 5, e1000291 (2009). 766

35. Ságodi, Á., Martín-Sánchez, G., Sokół, P. & Park, I. M. Back to the Continuous Attractor. Preprint at 767

https://doi.org/10.48550/arXiv.2408.00109 (2024). 768

36. Neunuebel, J. P. & Knierim, J. J. CA3 Retrieves Coherent Representations from Degraded Input: Direct 769

Evidence for CA3 Pattern Completion and Dentate Gyrus Pattern Separation. Neuron 81, 416–427 770

(2014). 771

37. Guzman, S. J., Schlögl, A., Frotscher, M. & Jonas, P. Synaptic mechanisms of pattern completion in the 772

hippocampal CA3 network. Science 353, 1117–1123 (2016). 773

38. Seung, H. S. Learning Continuous Attractors in Recurrent Networks. in Advances in Neural Information 774

Processing Systems vol. 10 (MIT Press, 1997). 775

39. Darshan, R. & Rivkind, A. Learning to represent continuous variables in heterogeneous neural networks. 776

Cell Rep. 39, 110612 (2022). 777

40. Sussillo, D. & Abbott, L. F. Generating Coherent Patterns of Activity from Chaotic Neural Networks. 778

Neuron 63, 544–557 (2009). 779

41. Chandra, S., Sharma, S., Chaudhuri, R. & Fiete, I. Episodic and associative memory from spatial scaffolds 780

in the hippocampus. Nature 638, 739–751 (2025). 781

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

31

42. Magó, Á., Kis, N., Lükő, B. & Makara, J. K. Distinct dendritic Ca2+ spike forms produce opposing input-782

output transformations in rat CA3 pyramidal cells. eLife 10, e74493 (2021). 783

43. Raus Balind, S. et al. Diverse synaptic and dendritic mechanisms of complex spike burst generation in 784

hippocampal CA3 pyramidal cells. Nat. Commun. 10, 1859 (2019). 785

44. Tapson, J. & van Schaik, A. Learning the pseudoinverse solution to network weights. Neural Netw. 45, 786

94–100 (2013). 787

45. Taxidis, J. et al. Differential Emergence and Stability of Sensory and Temporal Representations in 788

Context-Specific Hippocampal Sequences. Neuron 108, 984-998.e9 (2020). 789

46. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. Preprint at 790

https://doi.org/10.48550/arXiv.1412.6980 (2017). 791

47. Zhou, S., Seay, M., Taxidis, J., Golshani, P. & Buonomano, D. V. Multiplexing working memory and time in 792

the trajectories of neural networks. Nat. Hum. Behav. 7, 1170–1184 (2023). 793

48. Priestley, J. B., Bowler, J. C., Rolotti, S. V., Fusi, S. & Losonczy, A. Signatures of rapid plasticity in 794

hippocampal CA1 representations during novel experiences. Neuron 110, 1978-1992.e6 (2022). 795

49. Pascanu, R., Mikolov, T. & Bengio, Y. On the difficulty of training recurrent neural networks. in 796

Proceedings of the 30th International Conference on Machine Learning 1310–1318 (PMLR, 2013). 797

50. Bengio, Y., Simard, P. & Frasconi, P. Learning long-term dependencies with gradient descent is difficult. 798

IEEE Trans. Neural Netw. 5, 157–166 (1994). 799

51. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997). 800

52. Whittington, J. C. R., McCaffary, D., Bakermans, J. J. W. & Behrens, T. E. J. How to build a cognitive map: 801

insights from models of the hippocampal formation. Preprint at http://arxiv.org/abs/2202.01682 (2022). 802

53. Stachenfeld, K. L., Botvinick, M. M. & Gershman, S. J. The hippocampus as a predictive map. Nat. 803

Neurosci. 20, 1643–1653 (2017). 804

54. Behrens, T. E. J. et al. What Is a Cognitive Map? Organizing Knowledge for Flexible Behavior. Neuron 100, 805

490–509 (2018). 806

55. Vaidya, S. P., Li, G., Chitwood, R. A., Li, Y. & Magee, J. C. Formation of an expanding memory 807

representation in the hippocampus. Nat. Neurosci. 1–9 (2025) doi:10.1038/s41593-025-01986-3. 808

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

32

56. Qian, F. K., Li, Y. & Magee, J. C. Mechanisms of experience-dependent place-cell referencing in 809

hippocampal area CA1. Nat. Neurosci. 1–11 (2025) doi:10.1038/s41593-025-01930-5. 810

57. Kohonen, T. Essentials of the self-organizing map. Neural Netw. 37, 52–65 (2013). 811

58. Geiller, T. et al. Local circuit amplification of spatial selectivity in the hippocampus. Nature 1–5 (2021) 812

doi:10.1038/s41586-021-04169-9. 813

59. McKenzie, S. et al. Preexisting hippocampal network dynamics constrain optogenetically induced place 814

fields. Neuron 109, 1040-1054.e7 (2021). 815

60. Kappel, D., Nessler, B. & Maass, W. STDP Installs in Winner-Take-All Circuits an Online Approximation to 816

Hidden Markov Model Learning. PLOS Comput. Biol. 10, e1003511 (2014). 817

61. Sun, W. et al. Learning produces an orthogonalized state machine in the hippocampus. Nature 1–11 818

(2025) doi:10.1038/s41586-024-08548-w. 819

62. George, D. et al. Clone-structured graph representations enable flexible learning and vicarious 820

evaluation of cognitive maps. Nat. Commun. 12, 2392 (2021). 821

63. Arjovsky, M., Shah, A. & Bengio, Y. Unitary Evolution Recurrent Neural Networks. Preprint at 822

https://doi.org/10.48550/arXiv.1511.06464 (2016). 823

64. Le, Q. V., Jaitly, N. & Hinton, G. E. A Simple Way to Initialize Recurrent Networks of Rectified Linear 824

Units. Preprint at https://doi.org/10.48550/arXiv.1504.00941 (2015). 825

65. Henaff, M., Szlam, A. & LeCun, Y. Recurrent Orthogonal Networks and Long-Memory Tasks. in 826

Proceedings of The 33rd International Conference on Machine Learning 2034–2042 (PMLR, 2016). 827

66. Cone, I. & Clopath, C. Latent representations in hippocampal network model co-evolve with behavioral 828

exploration of task structure. Nat. Commun. 15, 687 (2024). 829

 830

 831

Acknowledgements 832

This work was supported by BBSRC (BB/N013956/1), Wellcome Trust (200790/Z/16/Z), the 833
Simons Foundation (564408), EPSRC (EP/R035806/1 and EP/X029336/1) and ERC-UKRI 834

(EP/Y027841/1). 835

Author Contributions 836

I.C., C.C. and R.P.C. conceived and designed the model. I.C. developed and performed the 837

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

33

simulations. I.C., C.C. and R.P.C. wrote the manuscript. 838

Competing Interests 839

The authors declare no competing interests. 840

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

34

Tables 841

 842

 843

Parameter Value Units Description

𝑻 200 dt Total timesteps

𝒅𝒕 50 ms Timestep

𝝉𝒃 1.31 s “Backwards” kernel time constant

𝝉𝒇 0.69 s “Forwards” kernel time constant

𝝀 1 - Weight constant

𝚫𝒕 5 s Time window of integration around plateau

𝛄 10 - Constant input, to go from Δ𝑊 to Δ𝑉 (Figure 1)

𝛔 0.075 s Standard deviation of input Gaussians

𝛉 8 - Threshold for plateau event (Figure 2)

𝑵𝒊𝒏𝒑𝒖𝒕 200 - Number of input neurons

𝑵𝒐𝒖𝒕𝒑𝒖𝒕
81 - Number of output neurons

𝛈 0.95 - Learning rate (Figure 2)

𝛔𝒏 𝒩(0,1/35) - Noise, output neuron activity

𝑳 100 cm Box side length

𝛔𝒘 𝒩(0,1) cm Random walk updates (2D)

𝝑
0.15 - Threshold for plotting neural activity (Figure 2i)

𝑵𝒔𝒆𝒆𝒅 81 - Number of seed neurons

𝑵𝒗𝒊𝒔𝒊𝒃𝒍𝒆 100 - Number of visible neurons

𝛉 .6 - Threshold for plateau event (Figure 3)

𝛈 0.3 - Learning rate (Figure 3)

𝐖𝐢𝐧 𝕀 - Input weights (Figure 3)

𝐂 2.71 - Constant for gating term

𝑵𝒊𝒏𝒑𝒖𝒕 100 - Number of input neurons (Figure 4)

𝑵𝒊𝒏𝒕𝒆𝒓 10 - Number of hidden neurons (Figure 4, fixation task only)

𝑵𝒐𝒖𝒕𝒑𝒖𝒕 1, 2 - Number of output units (Figure 4, place cell task,
fixation task)

𝑻 100 dt Total timesteps (Figure 5)

𝝉𝒏𝒆𝒕 10 dt Network time constant (Figure 5)

𝑵𝒊𝒏𝒑𝒖𝒕 2 - Number of input neurons (Figure 5)

𝑵𝒓𝒆𝒄 100 - Number of recurrent neurons (Figure 5)

𝑵𝒐𝒖𝒕𝒑𝒖𝒕 2 - Number of output neurons (Figure 5)

g .85 - Gain, recurrent weight initialization (Figure 5)

𝛈 0.01 - Learning rate, ADAM (Figure 5)

𝜷𝟏 0.9 - Decay rate for first moment estimate in output weights,
ADAM (Figure 5)

𝜷𝟐 0.99 - Decay rate for second moment estimate in output
weights, ADAM (Figure 5)

𝜷𝟏,𝒓𝒆𝒄 0.999 - Decay rate for first moment estimate in recurrent
weights, ADAM (Figure 5)

𝜷𝟐,𝒓𝒆𝒄 0.9999 - Decay rate for second moment estimate in recurrent
weights, ADAM (Figure 5)

𝜺 10-8 - Constant to avoid division by zero, ADAM (Figure 5)

Table 1: Model Parameters

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

35

Supplemental Figures 844

Supplemental Figure 1 – Variance explained by principal components in recurrent attractor
network

Cumulative sum of variance explained by the first ten principal components of the effective

recurrent weight matrix, 𝐖𝐫𝐞𝐜 = 𝐖𝐞𝐖𝐝, after competitive learning via gBTSP. The first two
components are shown in Figure 3c.

 845

 846

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

36

Supplemental Figure 2 – Mean squared error for supervised feed-forward tasks

a) Feed-forward network with inputs 𝑥𝑗(𝑡) project to output 𝑦(𝑡) via weights 𝑊𝑗. The inputs 𝑥𝑗(𝑡) are

spatially selective and represent an animal running along a 1D track. b) A unimodal gaussian target
function (dotted black line) and the trained output (blue line) after the first 10 trials of gBTSP training.
c) The mean squared error over the first 10 trials of training.

 847

 848

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

37

 849

Supplemental Figure 3 – Variance explained by principal components in DNMS task

Cumulative sum of variance explained by the first ten principal components of network
activity in the DNMS task. The first three components are shown in Figure 5e.

 850

 851

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

38

Supplemental Figure 4 – Large learning rates lead to instability in gBTSP in recurrent
networks

a) Simulated agents are trained on a delayed-non-match-to-sample (DNMS) task where they must
distinguish between sequential “odor” pairs. The agent must learn to lick for non-matching
sequences (AB, BA), and refrain from licking for matching sequences (AA,BB). Bottom, the model
consists of a recurrent network with two odor inputs, hidden activities 𝐱(𝐭) and recurrent weights

𝐖. The hidden units project to an output 𝐲(𝐭) via weights 𝐕. Recurrent weights 𝐖 are trained via
plateaus occurring in the hidden units according to our gBTSP algorithm (see Methods). Output
weights are trained via the delta rule. b) Training using a learning rate double that used in Figure 6
(see also Table 1) results in gradient explosion. First five random seeded runs shown. Y-axis is the
norm of the gradient of the recurrent weights and is truncated at a value of 1010 for visual clarity.

 852

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 13, 2025. ; https://doi.org/10.1101/2025.06.12.659336doi: bioRxiv preprint

https://doi.org/10.1101/2025.06.12.659336
http://creativecommons.org/licenses/by-nc/4.0/

