

Ian Cone

Oxford, UK OX2

ian.cone@dpag.ox.ac.uk

+44 7447 261 564

Education

Rice University · Houston, TX

PhD, Applied Physics, Awarded August 2021

August 2017 – August 2021

MS, Applied Physics, Awarded August 2020

Courses of Note: Statistical Physics, QM, EM, Theoretical Neuroscience I & II

University of San Francisco · San Francisco, CA

August 2013 - May 2017

Bachelor of Science, Physics

Minors in Engineering Physics and Astrophysics

Courses of Note: Computational Physics I & II, Digital Electronics, Math Methods, Thermal, QM, EM, GR

Summa Cum Laude

Research Experience

Postdoctoral Research Scientist, Costa Lab · University of Oxford, Oxford, UK

March 2024 – Present

- Investigating the role of hippocampal behavioral timescale plasticity (BTSP) in credit assignment:
 - Used a generalized BTSP model (gBTSP) to analytically solve for the optimal distribution of BTSP-triggering plateau potentials to minimize a given objective function
 - Describing BTSP through the framework of burst-related theories of plasticity (burstprop, burstCCN)

Postdoctoral Research Associate, Clopath Lab · Imperial College London, London, UK

September 2021 – January 2024

- Emergence of conjunctive hippocampal representations from single-cell plasticity:
 - Created a closed-loop model of representation and behavioral learning which learns context-sensitive feature fields (“splitters”) via induction of behavioral time scale plasticity (BTSP)
- Flexibly Learned Errors in Expected Reward (FLEX):
 - Developed a mechanistic theory in which the temporal bases for reinforcement learning are plastic and develop specifically for rewarded stimuli

Graduate Research Assistant, Shouval Lab · UTHealth, Houston, TX

January 2018 – August 2021

- Investigating theoretical basis of learning and memory:
 - Designed biophysically realistic modular network to model sequence learning and recall in cortex
 - Modeled behavioral time scale plasticity (BTSP) formation of place cells via a biophysically realistic learning rule with analytically solvable fixed points

Graduate Research Assistant, Robinson Lab · Rice University, Houston, TX

August 2017 – January 2018

- Investigating nature of plasticity in neural networks in *Hydra vulgaris*:
 - Designed microfluidic assays for investigating phototaxis and thermotaxis behaviors

Research Assistant, Foreman Lab · University of San Francisco, San Francisco, CA

May 2014 - May 2017

- Initiated and managed various projects to create and study femtosecond electron pulses:
 - Built and characterized mode-locking femtosecond pulsed Erbium fiber laser from scratch

Research Assistant, Iavarone Lab · Temple University, Philadelphia, PA

Summer 2016

- Studied the effects of edge sites and grain boundaries on the superconducting properties of mono- and few-layer MoS₂:
 - Examined topography, work function, and superconducting band gap through use of STM, SEM, AFM, and Kelvin Probe

Publications

Cone, I, Clopath, C & Costa, RP, *Credit Assignment via Behavioral Timescale Synaptic Plasticity: Theoretical Frameworks*. bioRxiv, <https://doi.org/10.1101/2025.06.12.659336> 2025

Cone, I, Clopath, C & Shouval, HZ, *Learning to express reward prediction error-like dopaminergic activity requires plastic representations of time*. Nat Commun 15, 5856 2024

Cone I, Clopath C, Latent Representations in Hippocampal Network Model Co-Evolve with Behavioral Exploration of Task Structure. <i>Nat Commun</i> 15, 687, https://doi.org/10.1038/s41467-024-44871-6	2024
Cone I, Shouval HZ, Learning precise spatiotemporal sequences via biophysically realistic learning rules in a modular, spiking network. <i>eLife</i> 10, e63751 https://doi.org/10.7554/eLife.63751	2021
Cone I, Shouval HZ, Behavioral Time Scale Plasticity of Place Fields: Mathematical Analysis. <i>Front. Comput. Neurosci.</i> 15 https://doi.org/10.3389/fncom.2021.640235	2021
Precner et al. Evolution of Metastable Defects and its Effect on the Electronic Properties of MoS2 Films, <i>Scientific Reports</i>, 8(1), 6724. https://doi.org/10.1038/s41598-018-24913-y	2018

Selected Presentations

Cone, I, Clopath, C & Costa, RP, Credit Assignment via Behavioral Timescale Synaptic Plasticity, COSYNE 2025, Montreal, Canada. Poster Presentation	2025
Cone I, Clopath C, Self-supervised Induction of Flexible Population Representations in MEC-HPC Network Model. Gordon Research Conference, Synaptic Transmission, 2022. Lucca, Italy. Oral Presentation.	2022
Cone I, Clopath C, Shouval HZ, Learning and expression of dopaminergic reward prediction error via plastic representations of time. COSYNE 2022, Lisbon, Portugal. Poster Presentation.	2022
Cone I, Shouval HZ, Non-Markovian Sequence Learning and Recall with Hebbian Based Learning Rules, Gulf Coast Consortium Theoretical and Computational Neuroscience Conference 2020, Houston, TX. Poster Presentation.	2020
Cone I, Shouval HZ, A model cortical circuit capable of temporal sequence learning and recall, SfN 2019, Chicago, IL. Nanosymposium.	2019

Awards/Certificates

Travel Award, Smalley-Curl Transdisciplinary Research Symposium	February 2019
• Awarded to the best presenter during the SCI Transdisciplinary Research Symposium	
Dr. Raymond Genolio Award	May 2017
• The University of San Francisco's award for top performing graduate in the physical sciences	
Research Fellowship in the Sciences	
• The University of San Francisco's summer fellowship for continued research excellence	

Teaching Experience

Lead Teaching Assistant, Theoretical Neuroscience I and II- Rice University, Houston, TX	August 2018 – August 2021
• Instructed undergraduate and graduate students through office hours, recitation sections, and grading for advanced theoretical neuroscience courses throughout PhD program.	
Physics and Math Tutor · University of San Francisco, San Francisco, CA	August 2016 - May 2017
• Provided personalized one-on-one instruction for 25 hours/week in first and second-year physics and mathematics courses	
• Developed effective study plans aimed at improving students' problem-solving abilities and time management skills	
Lead Teaching Assistant., Astronomy · University of San Francisco, San Francisco, CA	Fall 2015 - August 2016
• Prepared, maintained and operated telescopes for student observation sessions and hands-on learning experiences	
• Led recitation sections to reinforce core concepts and provide additional support	
• Mentored and trained junior teaching assistants in laboratory management and teaching techniques	

ADDITIONAL REFERENCES AVAILABLE UPON REQUEST